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Abstract—Faced with a bioterrorist attack with an aerosolized
pathogen preparation, an emergency manager will need to make
medical resource allocations early in the aftermath, with large
uncertainties in the estimates of the resource demand, and in
ignorance of what subsequent attacks might occur at other
sites. In this work we use earlier results on the reconstruction
of bioattacks from partial observations of the patient stream
to calculate a probability density function of the resource de-
mand. Thereafter, we employ an optimization-under-uncertainty
approach to perform resource allocations for both a single-site
attack and a multiple-site attack, i.e., a reload scenario. We
test the approach in situations where resources are scarce. Our
approach can develop allocations profiles that have the potential
to reduce the probability of an extremely adverse outcome in
exchange for a more certain, but less adverse outcome. We also
explore the effect of placing limits on daily allocations.

I. INTRODUCTION

In the event of an aerosolized anthrax attack, emergency
managers will face the problem of allocating scarce resources
to treat those infected. If the attack is detected on environmen-
tal sensors, managers may have only a very approximate idea
of when the attack happened, where the release was, and what
the typical dose received was; in the absence of detection (e.g.,
release at an uninstrumented location) the first intimation of an
attack will be the confirmed diagnosis of the first few victims
of the attack. Thus emergency managers will have to make
allocation decisions in the face of substantial uncertainty. Fur-
ther, the attack may be one of a series of time-staggered attacks
at different locations (the “reload” scenario [1]). However,
the time-series of people presenting themselves at hospitals
requesting treatment for severe respiratory problems forms a
concrete source of data. It will be some time before anthrax
is confirmed. In the meantime, more patients will have come
forward for treatment. In this paper, we develop a tool that
uses a probabilistic model of the attack parameters (i.e., the
time of release, the number of people infected and the average
dose received) to compute an optimal strategy for allocating
scarce resources. Note that this work will focus on medical
personnel, equipment and other resources whose transportation
poses a logistical burden. Medicines and other prophylactic
interventions, whose transportation requirements are much
simpler, are not considered here. The formulation is general
and can accommodate both single-attack and reload scenarios,
allowing for an equitable (in a certain sense) allocation among

several targets.
In a previous work, [2], the authors developed a technique

that uses a time-series of diagnosed patients at the hospital,
along with some other assumptions, to calculate a probability
density function (PDF) of the attack parameters. With only a
short time-series, the PDF is rather broad, reflecting the high
uncertainty at the beginning of an attack. As more data are
collected on subsequent days and the time-series lengthens, the
PDF narrows, as expected. In [2] we illustrated the possible
use of this PDF to construct optimal allocations of resources
under significant uncertainty. The technique there was quite
simple, but showed that reasonable models could be created
and solved. This approach could thus be used to provide a
powerful tool to emergency managers to help them with such
a crisis, or as a planning tool to help assess the adequacy of
resources and logistics for various attack situations.

In this paper, we extend the work in [2] in several interesting
and important ways. First we show how to formulate the
problem as a two-stage stochastic optimization problem with
recourse. This is a more general formulation than in [2]. Then
we consider the use of several different objective functions
that might be used to measure the success of any allocation
strategy. We also consider two additional complications and
show that the resulting computational efforts are still quite
reasonable. The first is the reuse of resources in which we es-
timate the number of people who will die in spite of treatment
and the extent to which we can apply those resources to new
patients. The second is the possibility of a subsequent attack
and the need to spread the available resources “equitably” over
all of the targets.

It should be noted that certain aspects of the resource
allocation problem are classical operations research problems
that have been studied for years. Issues such as multiple supply
depots, differing costs for shipment to different cities, time de-
lays in shipping, etc., have all been thoroughly studied and can
easily be incorporated into any of our models. To keep things
simple here, we ignore most of these and simply consider what
the optimal allocation schedule should be regardless of these
other considerations.

It should also be clear that there is no one “right” way
to formulate the objective function for this problem. We will
consider some possible alternatives and comment on the mean-
ing and implications that can be attached to each. Similarly,



as will become clear in the formulation of the constraints
for the multi-target (reload) scenario, there must be some
specification of how the resources are to be shared. We propose
a way to do this, but make no claim that other constraints,
e.g., social constraints, may not be more appropriate in other
circumstances.

The paper is organized as follows. We begin by summa-
rizing in Section II some previous related work. Then, in
Section III, we provide the basic derivation of the stochastic
optimization problem with recourse. This is done for the single
target, or single city, case. This allows us to describe the
problem with simpler notation, but affords the opportunity to
introduce the relevant constraints and to discuss several objec-
tive functions. In Section IV we give some numerical results
for the single city case that illustrate some of the differences.
In Section V we discuss the extension to several cities and
show some numerical results illustrating this case. Finally, in
Section VI we give some conclusions and opportunities for
future research.

II. PREVIOUS WORK

The problem of resource allocation during a bioterrorism
event has generally been studied within a planning context. A
set of scenarios is assumed and one studies the pros and cons
of various intervention strategies. Wein et al [3] concluded that
distributing prophylactics and setting up facilities for hospital
care quickly (essentially, a surge in the medical treatment
facilities at a location, with its attendant requirement for
trained personnel, equipment and infrastructure) is the best
way to mitigate casualties in the aftermath of an aerosolized
anthrax attack. Other studies, e.g., [4], [5], have addressed
optimal ways of executing the interventions. In these studies,
the scale of the response is assumed to be known.

On the other hand, war-gaming exercises (e.g., the TOPOFF
exercises [6]) involving bioterrorism have revealed that a key
unknown in mounting a medical response to a release is the
size/extent of the outbreak [7], [8]. While underestimating the
scale of the required response can lead to disaster ( [7], [8]),
an overestimation can cause needless delay (and consequently,
casualties) and disruption. Within the context of a reload
scenario, it can also lead to a premature expenditure of scarce
resources, leaving one unprepared to respond to a subsequent
attack. To this end, there have been studies to estimate the
size of an outbreak, given partial observations. In [9], using
a dose-independent incubation period model (i.e., low-dose
exposure), the authors used a Bayesian approach to infer the
time and size of an anthrax outbreak. In [10], the authors, in
conjunction with a simple plume model for aerosolized anthrax
release, developed a Bayesian method to infer the location and
time of a release, primarily to prime a syndromic surveillance
system for early warning [11]. In [12], the authors developed a
spatiotemporal approach to estimate the size and location of an
aerosolized anthrax release, and quantified the uncertainty. As
few as 10 diagnosed patients were sufficient to infer many of
the attack characteristics to a specificity sufficient for mounting
a response.

In [2], the current authors addressed the problem of estimat-
ing the attack parameters from a short time-series of diagnosed
patients. A purely temporal approach was used to formulate a
statistical inverse problem, which was solved using a Bayesian
technique. The attack parameters were inferred as PDFs. These
PDFs could be developed with a time-series three days long;
with more data, the PDFs narrowed, indicating a reduction
in the uncertainty in the inferences. The model was applied
to the Sverdlovsk anthrax outbreak and was able to identify
the time of the release with 3 days of data, and came close to
estimating its size with a time-series 9 days long. The outbreak
lasted 42 days. We also explored the possibility of using the
inferred attack parameters to plan a medical response, i.e., to
estimate the quantity of medical resources required. Using the
joint PDF of the attack parameters, we developed an ensemble
of possible epidemic realizations and allocated resources to
minimize casualties, subject to the constraint that only a cer-
tain (insufficient) quantity of resources were available. These
allocations were were deemed “optimal” allocations and each
realization of the epidemic was called a “scenario”. Thereafter,
using a quadratic programming approach, we developed a
“least-regret” allocation that would tend to minimize both re-
source wastage and casualties, given the uncertainty in how the
outbreak would actually develop temporally. Regularization (in
the optimization problem) was introduced as a penalty on the
amount of resource used (i.e., we penalized large allocations as
a way to hedge). It was observed that the least-regret allocation
was very different from the “naive” allocation (an average over
the optimal allocations for the members of the ensemble of
epidemic realizations). The PDF of casualties arising out of
the “naive” allocation was seen to be “long-tailed” while those
arising from the least-regret allocation was peaked. Thus the
least-regret allocation traded away a small risk of very high
casualties for a smaller, but more certain level of deaths.

In [2], the rationale behind including a study of resource
allocation lay in demonstrating how the characterization of the
attack could be used profitably. It considered neither the reuse
of resources (once an anthrax-infected patient had died), nor
the inclusion of recourse in the models, i.e., consideration of
corrections that can be made after new information has become
available. It also did not consider the question of “reload”,
i.e., time-staggered attacks, where allocation of resources have
to be performed between two (or more) resource consumers,
whose demands (and the degree of uncertainty in them) are
different. We examine these more resource-allocation centric
issues in this paper.

Before presenting our formulation of the problem, we
remark on the nature of the treatment for anthrax. It is assumed
that patients are diagnosed with anthrax only during their
prodromal phase and will receive a powerful antibiotic. If this
is the only intervention received, then approximately 85% of
these people will die (this number is taken from the Sverdlovsk
outbreak, where 69 out of 80 infected people died [13], [14]).
If medical resources are available, the patient is assumed
to have access to intensive care / surgical equipment for
tracheocentesis / pleural drainage and will face a mortality



probability of 45%. This number is taken from the 2001
anthrax attacks where 5/11 people infected with inhalational
anthrax died [15], [16]. In the remainder of this paper, we refer
to people receiving treatment as those who get these aggressive
measures.

III. STOCHASTIC OPTIMIZATION

As noted above, the basic problem is one of making optimal
allocation of resources under significant uncertainty. In the
previous section, we showed how to capture this uncertainty
in a PDF that can be used to predict the number of patients
who arrive at the hospital requesting treatment. Specifically,
we construct a number of such scenarios that are consistent
with the data we currently have.

The basic strategy is to use the data that we have to make
a decision of how much resource to allocate today. We also
estimate the quantity of resources that might be required in
the future (i.e., a resource allocation profile) to plan future
logistical requirements. When new information is obtained
the next day, a new estimation of the attack parameters
(and the resource demands) is performed. The scenarios are
recalculated in light of the new data, the available resources
are decreased by the amount allocated today, and the allocation
recalculated. Thus we have one decision variable: the amount
we allocate today based on the information at hand. Let that
variable be a.

We adopt the following assumptions and notations: Let
• K be the number of scenarios;
• T be the number of days that we consider, i.e., the

planning horizon of the epidemic;
• Nk,j be the number of people requiring treatment who

arrive on day j in scenario k;
• rk,j be the allocation made on day j in scenario k;
• Dk,j be the number of people who die on day j in

scenario k;
• Dk be the total number of people who die in scenario k;
• R be the total number of resource units available for the

attack, where we assume for simplicity that one unit of
resource treats one patient;

• sk,j be the number of resource units available on day j
of scenario k;

• tj be the fraction of people, arriving on day j, who will
die having been treated;

• uj be the fraction of people, arriving on day j, who will
die not having been treated.

We assume that those arriving later in the attack will be
more likely to be successfully treated. This is motivated by
the fact that longer incubations generally indicate a lower
dose exposure (or a robust constitution). Thus we assume that
tj+1 > tj and uj+1 > uj . In practice, we make this difference
(tj+1−tj = uj+1−uj = ε = 10−6) small and it merely serves
as a mathematical stratagem to remove multiple solutions.

To construct the optimization problem, we need to specify
the objective function. As a first cut, let us assume that we
want to minimize some function of the sum of the number of

deaths in each scenario, i.e., we seek to minimize
K∑

k=1

M(Dk)

where M(Dk) is some measure of Dk. We could consider
various measures, but clearly one could take M to be simply
the expected number of deaths. The optimization problem is
then

min
a

K∑
k=1

M(Dk),

where we have to specify constraints on resources and on how
to compute Dk. The resource constraint is, clearly,

0 ≤ a ≤ R.

Given the treatment assumptions described above, we can
easily compute

Dk,j = rk,jtj + (Nk,j − rk,j)uj . (1)

For day 1, we tentatively substitute a for rk,1.
The allocations rk,j , j > 1 can be chosen to be the optimal

allocations for scenario k, given that allocation a was made
in day 1. These allocations will be constrained as follows:

rk,j ≥ 0
T∑

j=2

rk,j ≤ R− a for each k. (2)

Although it is possible to iteratively solve problems for each
scenario separately, it is more efficient to make the collection
rk,j variables in the optimization problem and solve one large
problem rather than K smaller problems for each trial value
of a.

Before we pose the final version of the initial problem,
we must address an important situation. It is possible that in
some scenarios, an allocation a or rk,j will be greater than
the number of people who arrive, i.e., a > Nk,1, in which
case, the value of Dk,j from above will not correctly calculate
the number of deaths. To handle this situation, instead of
substituting a for all rk,1, we retain separate rk,1 variables
and impose the constraint rk,1 ≤ a for all k. We also impose
the simple bound constraints rk,j ≤ Nk,j for all (k, j), and
we change (2) to

T∑
j=2

rk,j ≤ R− rk,1.

Another important concern is that without further con-
straints, the optimal choice of a may be to allocate all
possible resources on the first day, which seems unlikely to
be the best policy. One way to address this issue is to make
tentative allocations for all days in the planning horizon, i.e.,
to introduce decision variables ai ≥ 0 for 1 ≤ i ≤ T and to
restrict each scenario’s allocations by rk,j ≤ aj , with a1 = a
and

T∑
j=1

aj ≤ R.



In other words, we decide, a priori, that the daily allocation
cannot exceed a certain level. Obviously the level chosen has
a significant impact on the quality of the allocation calculated.
This is studied further below.

Of course, the purpose of the exercise is still to choose the
first day’s allocation a = a1. Another possibility is to penalize
over-allocation of resources, in keeping with some standard
approaches. To do this, we introduce a penalty term in the
objective function of the form

ρ · (a− rk,1)+,

where x+ = x if x > 0 and 0 otherwise, and ρ is a con-
stant chosen to appropriately balance the costs, i.e., penalize
wastage / overallocation of resources. We choose this form for
our studies here.

Policy makers may further wish to limit daily allocations to
specified fractions of the available resources, say aj ≤ σjR.
For simplicity, below we use a common value σj = σ ∈ (0, 1]
for all j (with σ = 1 imposing no further restriction).

The final topic we consider here is the reuse of resources.
As noted, a high percentage of patients being treated will
die anyway and they will die at a nonuniform rate. Some,
in fact, will die quite early and their resources can be used on
incoming patients. Data for estimating the rates are not readily
available, but reasonable approximations can be made. Based
on typical treatment progressions, the longer one survives, the
more likely complete recovery becomes. Thus the percentage
of people who die after n days of treatment should increase
rapidly for a few days and then gradually decrease. As a first
cut, we assumed a ten-day period and used a simple function,
fn = f0

n/
∑10

k=1 f0
k with f0

n = n/(1 + exp(n/2)) to estimate
these rates (with fn = 0 for n > 10). This is in the form
of the expected percentage of people being treated who will
die n days after treatment has begun. It is straightforward to
then estimate the number of resources that will be available
on any given day, as in (5) below. Along the same lines, as
noted above, there will be some scenarios for which allocations
will exceed demand and the extra resources will likewise be
available for incoming patients. The number of people who
will die is still given by (1).

Our optimization problem is shown in Figure 1. Some
remarks about it are in order. It is a two-stage stochastic
optimization problem with recourse. The first stage is today
and the second stage is days 2–T . Each scenario takes recourse
on the basis of today’s allocation and does the best that it can
after that. Constraints (3), (4), and (5) together imply that each
scenario consumes at most R resources.

One could, in principle, construct a multi-stage problem by
dividing the days 2–T into two or more stages. Suppose, for
example, that the second stage is days 2–4. Then one could
trace each of the K scenarios through day 4. At that point,
one assumes that, for each k, the data Nk,j , j = 1, . . . , 4, are
“true”, constructs a PDF based on this data and samples that
to obtain K new time series for each k. Although this can be
easily continued, it is clear that the number of possible paths
through the attack grows rapidly. In this paper, we confine

min
a,rk,j ,sk,j

1
K

K∑
k=1

{M(Dk) + ρ(a− rk,1)+}

subject to: 0 ≤ a ≤ σR

0 ≤ rk,j ≤ min(Nk,j , σR)
rk,1 ≤ a

rk,j ≤ sk,j (3)
sk,1 = R (4)
sk,j = sk,j−1 − rk,j−1 (5)

+
j−1∑
n=1

fntj−nrk,j−n

Dk,j = tjrk,j + (Nk,j − rk,j)uj

Dk =
T∑

j=1

Dk,j .

Fig. 1. Multi-scenario resource allocation problem.

ourselves to just the two stages, but the extension to more
stages is theoretically possible.

We have not yet specified M in the objective function, but
we note that the constraints are all linear. Thus, if M is a linear
function, we have a classical linear programming problem for
which there are many excellent algorithms available. If we
take M to be the identity operator, i.e.,

M(Dk) = Dk =
T∑

j=1

Dk,j (6)

then we are simply computing the expected number of deaths
in each scenario, and

D̄ =
1
K

K∑
k=1

Dk (7)

is the expected number of deaths over all the scenarios. This
has an obvious appeal; results using this choice of M are
reported in the next section. A potential problem with this is
that scenarios with a large number of infected people could
dominate the decisions. Recall our assumption that people
arriving later are better candidates for treatment; in a scenario
with a large number of people, the algorithm would delay the
allocation of resources much more so than for a scenario with
a much smaller number of infected people. It could be argued
that the sampling procedure should properly account for this,
but one could also divide Dk by the total number of people
infected in scenario k. This downplays the influence of the
larger cases, while keeping the problem linear.

A different approach, related to the work in [2], is to
compute the optimal number of deaths for each scenario in
K separate problems. Call the results Dk

∗. Then one could
obtain an allocation that stays as close as possible to all of
these in some sense. A natural way to do this is to minimize the



variance between the vector Dk
∗ and the vector Dk resulting

from any other allocation. In particular, one could use

K∑
k=1

(Dk −Dk
∗)2

as the objective function. In [2] we referred to this as the least-
regret formulation with the interpretation that the allocation
made today is the one that we will least regret in the future
since it does reasonably well for all scenarios. As above,
we could scale each of the terms by the total number of
arrivals in that scenario. Since this is a quadratic function, the
optimization is now a convex quadratic programming problem;
again, good algorithms exist. The computation of each Dk

∗ is
a small linear programming problem that is solved quickly.

We now present some numerical results illustrating some of
the issues raised here.

IV. RESULTS FOR ONE CITY

To explore the approach, we first generated a test case
involving an anthrax attack on a single city. This is described
in [2]. Briefly, an aerosolized anthrax release is simulated
over a domain with spatially variable population density.
Per this distribution and an atmospheric dispersion model,
22,384 individuals are infected with a range of doses, with
an average dose of 1470 spores. People develop symp-
toms over time; the time series for the first 10 days is
{3, 123, 719, 2046, 2202, 2194, 2058, 1918, 1656}. This time
series was used to draw 100 samples from the joint PDF
of the attack parameters using a single-component random-
walk Markov Chain Monte Carlo (MCMC) sampler. Note
that these samples were drawn after the MCMC sampler
had “burnt-in” and had “converged” per the mcgibbsit
package in R (Chapters 7 and 8 in [17]; also see [18]). For
each attack parameter sample, 10 epidemic realizations were
calculated (the forward model is stochastic), resulting in a set
of 1000 epidemic realizations (or scenarios). Such ensembles,
generated from the first 5 days of data in the time-series
above, are plotted as the gray region in Figure 2. Note that we
measure time from the day that the first person was diagnosed
with anthrax (rather than the time of attack/infection). The
distribution developed with data collected through Day 7 is
much narrower than that through Day 3, confirming that the
addition of 4 extra days of data significantly reduces the
uncertainty. This has not been plotted here.

The model was implemented in AMPL [19]–[21] and used
the CPLEX 11 [22] simplex method to solve the problems.

We ran many tests based on the model described above. We
fixed our available resources such that they could treat 10,000
patients (out of the 22,384 infected), i.e., they are scarce. Our
first observation is that the form of the function M does not
make much of a difference in the results. Thus all of the
results we show here were calculated using (6) to minimize
the expected deaths (7). Our second observation is that the
penalty parameter, ρ, should be taken to be a small value to
ensure its desired effect. After some tests with several values

of ρ, summarized in Table I, we chose use ρ = 0.001 for all
of the results reported here.

ρ a D̄
0. 10000 9358.0
0.0001 2384 9358.0
0.001 2364 9358.0
0.01 2317 9358.2
0.1 2261 9360.2

TABLE I
EFFECT OF ρ ON a AND EXPECTED DEATHS (7).

In Figure 2 we plot the allocations, given a resource demand
drawn from 5 days of observations in the time series. The
gray region denotes the ensemble of scenarios. The time-
series values used for the inference are plotted with triangles;
the future observations in the time-series are plotted with
diamonds. Allocations were calculated for σ = 0.04 and 0.1.
Clearly σ makes a significant difference. Recall that there are
two possible reasons for imposing a constraint on the amount
of resource that can be shipped on a given day: the first is
that this may simply be a logistical constraint; the second is
that the emergency manager may want to conserve resources
as a hedge against a subsequent attack. Observe that our
formulation only computes the allocation for Day 6; to give
managers an idea of allocations that might be appropriate on
subsequent days, we obtain tentative allocations for days 7–
T by averaging the allocations for each day over all of the
scenarios. (Subsequently arriving data should influence the
actual allocations for later days.) As is evident in Figure 2, the
severe restriction imposed by σ = .04 implies that many fewer
resources can be allocated than for the lighter restriction of
σ = .10. Thus there is a commensurate increase in the number
of deaths with σ = .04, as we show in Figure 3. Here we plot
the PDF of excess casualties (over the optimal/minimal level
that we would have achieved had we perfect knowledge of the
epidemic) for the two values of σ. As might be expected, the
effect of σ (i.e., the placing of a ceiling on how much can be
shipped on a given day) is felt mainly in those scenarios that
project a large number of infected people turning symptomatic.
We also see that increasing σ narrows the PDF (we reduce
the long-tail probability of an extremely adverse outcome)
while raising the peak of the PDF and moving to lower values
of excess casualties, i.e., increasing the probability of a less
adverse outcome. Since the probability mass under the PDF is
1, this is tantamount to increasing the probability of a certain
(acceptable) level of casualties while simultaneously trading it
to reduce the probability of an extremely adverse outcome - a
classic hedging / risk management operation. This is captured
quantitatively in the change of shape of the PDF with σ.

For σ ≥ 0.20 we obtain an allocation (not shown here)
resulting in very few excess casualties in each scenario. These
results show that the model can be used for assessing the
effects of conserving resources in anticipation of a second
attack or for planning purposes to see the need for a higher
shipping capacity.
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plotted with triangles; the future, unobserved evolution with diamonds.
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Fig. 3. PDFs of excess casualties for σ = 0.04 and 0.1. R = 10,000. A
tighter daily constraint on allocations (σ = 0.04) increases the probability of
excess casualties. However, note that the PDFs have rather compact support.

One could also compare the PDFs of excess casualties if
a “naive” approach to resource allocation was considered,
e.g., given an R, one allocates on a scenario-by-scenario
basis (leading to 1,000 allocations), then simply uses the
mean of these allocations. Such a “naive” allocation results
in a very long tail (see [2] for a comparison) and is not
very competitive for hedging purposes vis-à-vis the more
sophisticated techniques considered here and in [2]. For the

rest of this paper, the “naive” approach will be ignored.

V. THE RELOAD CASE

The main complication in dealing with an attack on two
or more cities is in deciding how to allocate the resources
among all of the cities. From the point of view of the model,
it does not make any difference if a life is saved in the
first city or the second. Thus, without further constraints,
there is an inherent non-uniqueness in the solution of the
problem, since the optimal number of deaths can be achieved
in many ways, including the extreme one of sending all of
the resources to one city and ignoring the other. In practice,
it seems reasonable to assume that there will have to be some
“social” or infrastructural constraint to ensure that all cities are
treated fairly. We illustrate how this could be achieved below,
but first we deal with another issue, namely that of whether
or not to anticipate subsequent attacks.

As noted in Section III an emergency manager may wish to
restrict the amount of resources that can be shipped on each
day. This is done by imposing the constraints rk,j ≤ σR. The
manager could equally well choose σ to conserve some of the
resources in case there is a subsequent attack, the “reload”
case. If there is a subsequent attack, there is no way to say
anything about it until there is some evidence in the form of
people in the second city arriving at the local hospital in need
of treatment. As is the case for the first city, a few days of
data are required before any reasonable PDF can be computed
and sampled.

Extending the basic model above to the case of several
cities is straightforward. The major addition for the reload case
is the social constraint. We illustrate the possibilities with a
simple constraint that seeks to ensure that each city receives
a proportional amount of the resources. A way to do this is to
impose the constraints

Di/Ai ≤ (1 + π)
∑
j 6=i

Dj/
∑
j 6=i

Ai,

where Di are the deaths in city i, Ai is the total number of
patients in city i, and π ∈ [0, 1]. For the results reported here,
we used π = 0.1, so that the relative resource allocations are
within 10%.

We demonstrate this allocation approach on a simulated
reload scenario. The first attack (on City A) is the same
as in Section IV. However, on Day 3 of the first attack,
City B records an anthrax diagnosis and it is verified that
it too has been attacked. The time-series for City B is
{0, 0, 1, 76, 711, 1765, 2720, 3099, 3186, 2896} for the first 10
days. The attack on City B was simulated in the manner
described in [2]. 29,861 people were infected, with an average
dose of 2749 spores. The two attacked cities therefore have a
resource demand of around 50,000 units. In the study below,
we will assume that only 25,000 units are available.

The allocations are shown in Figures 4 and 5 for Day 6
of the attack, i.e., we have a time-series 5 days long for City
A and 3 days long for City B. The gray region in Figures 4
and 5 show the ensemble of scenarios for the two attacks; as



expected, the ensemble for City B is far broader than City
A, denoting a larger uncertainty arising from a smaller time-
series of observations. The observed and unobserved evolution
of the epidemic in the two cities is plotted using triangles
and diamonds. The allocations developed with σ = 0.04 and
0.1 are plotted for Day 6 (and beyond) of the epidemic.
Note that the allocation is only meant for Day 6. Both the
plots demonstrate how allocations are curtailed as σ decreases,
leading to extra casualties, especially for scenarios that project
larger epidemics. Also note that the effect of σ is felt mostly
during the peak of the epidemic; the allocations are similar
towards the end. This is a consequence of our modeling
decision to slightly favor later allocations.

In Figure 6 we plot the PDFs of excess casualties (over the
minimum that we would achieved had we perfect knowledge
of the attack and the epidemic). The excess casualties for Cities
A and B, for σ = 0.02, 0.04 and 0.1 are totaled and plotted.
Note that the σ = 0.1 case is not at all restrictive and one even
has overallocation of resources (the “negative” casualties).
This happens when two exceptionally small scenarios for City
A and B are considered. Note that the σ value merely places a
bound on daily allocation; the constraint that daily allocations
must add up to the available resources is not violated. The
hedging effect of σ seen in Section IV is also reproduced
here, though with a few modifications. In all cases, we see a
multimodal excess-casualty distribution. While σ = 0.04 does
manage to translate the excess-casualty PDF to the left (vis-à-
vis σ = 0.02), we see the width of its support is unchanged,
i.e., the higher value of σ reduces the expected casualties (and
consequently risk), but does not improve the hedge compared
to σ = 0.02.

VI. CONCLUSION

We have developed a novel approach to the problem of
allocation of scarce resources in the face of great uncertainty
following an anthrax attack. Our approach involves the calcu-
lation of a PDF that captures the uncertainty in the nature of
the attack.

We have shown that this PDF can be used to generate
realistic scenarios regarding the evolution of the ensuing
epidemic. These scenarios can be used within optimization
models to provide reasonable resource allocation schedules.
We show that these are likely to be effective over all of the
scenarios generated. Our models contain constraints that add
realism to them and show that they can be extended to address
a wide variety of situations. They also contain a parameter
σ that places a constraint on the maximum level of daily
allocations. This serves as a proxy for an emergency manager’s
risk appetite (e.g., if a second attack is expected and resources
have to be conserved) as well as infrastructural limitations.

We have exercised the models in single- and two-attack
cases. In the two-attack case, we have demonstrated how a
degree of fairness in the allocations to the two attacked sites
can be encoded into the optimization problem. We find that σ
has a significant effect the optimality of the solution. However,
this sub-optimality (alternatively, the risk of excess casualties)
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Fig. 4. Allocation under various values of σ for City A. The gray region
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both cities). These allocations were drawn from data collected over 5 days;
allocations are for Day 6. The observed evolution of the epidemic is plotted
with triangles; the future, unobserved evolution with diamonds.
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can be rigorously captured as a PDF; lower values of σ tend
to lengthen the tail of the PDF creating a low, but non-zero
possibility of extremely adverse outcomes. Thus, in a decision-
theoretic setting, one could arrive at a recommended σ value
based on a utility function, predicated on the PDF of casualties.
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Fig. 6. PDF of excess casualties for σ = 0.02, 0.04 and 0.1. R = 50,000.
Note how σ = 0.1 results in certain “negative” casualties, i.e., excess
resources in certain low casualty scenarios. Most of the excesses occur in
the smaller attack (City A). The PDF corresponding to σ = 0.02 and 0.04
have a similar support widths but the higher value of σ reduced the expected
value of casualties.

Our allocation models are general and could easily be
extended to handle a complex network of supply depots and
shipping strategies. We have shown how one may balance the
allocations in a socially fair way in the multiple-attack case.
The point of these extensions was not to be exhaustive, but
to illustrate the fact that many constraints can be added to
provide the emergency managers with a useful and powerful
tool to help them make difficult decisions, or to plan over a
wide variety of constraints.

Future work on this topic includes extensions that allow
more complicated classes of resources with appropriate models
of how these resources affect the number of survivors. More
interesting is the consideration of a different type of disease.
A simplifying feature of anthrax is that it is not contagious, so
the scenarios that we generate are independent of any resource
allocation strategy. In a contagious disease, however, resources
allocated, along with other response strategies, e.g., quarantine
of those infected, affect the progression of the epidemic. This
coupling will be challenging to model, but we believe that the
methods described here provide a foundation for addressing
these cases.
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